CHOICE OF SPACE AND TIME STEPS IN CALCULATING
TEMPERATURE DISTRIBUTIONS
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As an example of the use of the explicit finite~difference scheme for calculating the tempera-
ture distribution in an infinite plate we discuss a method of constructing networks which leads
to stable solutions for a specified computational accuracy.

It is well known that the nonstationary propagation of heat in a wall can be described by a system of
explicit finite-difference equations, The stability and convergence of the solution of such a system are de-
termined by the magnitudes and the ratio of the space and time steps used in the numerical integration of
the system [1-4].

For the simplest three-point scheme the magnitudes of the temperatures ¢; and i (AF¥o) corresponding
to the times Fo and Fo-+ AFo are connected by the following relation, written in dimensionless form

,; (AFo0) = &;,_;4;AFo - §; [1 — AFo (4; -+ B;)] + 9,,,B,AFo. (1)

It is assumed that the thermal flux is uniform and that the ambient temperature and the thermophysical
characteristics of the wall are constant. The coefficients A;, B; are found by applying the heat balance
condition to the elementary parts into which the wall is decomposed for the calculation. The number of
these parts m determines the size of the space steps.

The requirement that the solution of a system of equations of type (1) be stable for all nodal points is
satisfied if

AFo< — 1 0«

A B Li<m, (2)

We note that points with number i = 0 and i = m belong to the boundary surfaces of the wall,

Condition (2) establishes the largest admissible value of a time step AFo. Another natural limitation
is imposed by the required accuracy of the calculation of the temperature distribution. High accuracy in
nonstationary thermal problems can be achieved only for sufficiently large values of m, At the same time
increasing m leads to a sharp increase in computing time. If for m = 10 a computer of the M-20 type [5]
requires one second to compute the temperature distribution in the wall to a value of the Fourier number
Fo =1, then for m =80-100 a similar calculation requires 10-20 minutes of machine time, It should be
noted that the design of a heat engine generally involves the study of dozens of structural variations. There-
fore, a reasonable choice of time and space steps in calculating temperature distributions is of considerable
value,

Analysis of the effect of m on the accuracy of the calculation of the temperature is most conveniently
performed for an infinite plate with boundary conditions of the first kind. In this case Eq. (2) takes the
form

1
ol (3)

AFo
- 2m*

Eqguation (3) contains the single parameter m.
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Fig. 1. Dependence of the error Ad =& —dgxq0t On Fo a) for
small and b) for large m.

The initial temperature of the wall is taken as zero at all points. The boundary conditions can be
written in the form

8, (Fo) = 9,, (Fo) = 1.

The time step AFo in the calculations is determined by the equality (3)

1
AFo = —— .
o (4
For convenience in plotting graphs the values obtained for AFo are reduced to the nearest multiple of 0,01,
the value chosen for the time step in the printout.

The accuracy of the calculation can be checked, for example, by the value of the temperature at the
center of the plate 4(Fo), We denote the exact value of the check temperature by dexact-

Figure 1 shows the error Ad =4 - 4,4, 25 a function of Fo for various values of m. The figure
shows that the maximum of the absolute values of the error for m = 4 occurs for Fo = 0,12~-0.14, Ifa
value is set for the maximum admissible error |Adlyax, then for each value of Fo it is possible to find
the smallest value of m ensuring the required accuracy of the calculation, The resulting graph for the
choice of m is shown in Fig. 2.

The curves of m (Fo, | Adlyax) give the values of m permitting calculations to a specified accuracy
with a minimum expenditure of machine time. The size of the step AFo for a chosen m can be determined
from Eq. (4). Ia the range 0 < Fo = 1 the choice of m and AFo by the method described halves the calcu~
lation time in comparison with the time necessary with a fixed m. Thus if the temperature of a plate is to
be determined to three significant figures (|Ad¢{pmax = 0.0005) m must be taken equal to 32 in calculations
with a constant step, whereas in calculating with the curve for [Ad[pqax = 0.0005 the value of m varies from
32 to 5.

A further decrease in machine time can obviously be achieved if instead of determining the step AFo
from (4) a relation is used which ensures a smaller error at each step of the calculation, e.g,, the relation

1

AFo = , (5)
6m?
obtained from
h2
[= 6
6a (6)
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Fig. 2. Graph for determining
the number m for various values
of the maximum admissible error
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As shown in [2, 8] the error of Eq. (6) for a given h is half as large as for the relation

h?

=

2a

’

which corresponds to Eq. 4).

The effectiveness of the method described for choosing the mesh size is verified in an analysisof the
heating of solid and hollow cylinders with boundary conditions of the first kind and a plate with boundary
conditions of the third kind.

This kind of analysis may turn out to be useful in constructing solutions of similar problems requir-
ing extensive calculations,

NOTATION
Fo is the dimensionless time (Fourier number);
AFo, ! is the length of the time step;
AFO0n, is the length of the time step in printout of the machine calculations;

4i and ¢ (AFo) are the relative temperatures of the wall at times Fo and Fo + AFo, respectively;
$i = [T{(Fo)—Tol/(Ta—To);
To and Tj(Fo) are the initial and running temperatures of the wall;

Ty is the ambient temperature;

Aj and Bj are the constants determined by applying heat balance conditions to elementary parts into
which the wall is divided for calculation;

m is the number of elementary parts;

i is the ordinal number of nodal point in calculational network, 0 = i = m;

Ad =d—Fexgcet 1S the error in the calculating temperature;

4 and dexact are the calculated and exact values of relative temperature at the center of the plate;

[ A% max is the maximum absolute value of admissible error;

h is the length of the space step;

a is the thermal diffusivity of material.
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